2 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Bobbye Bousquet edited this page 4 months ago


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled versions ranging from 1.5 to 70 billion criteria to construct, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we show how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable actions to deploy the distilled versions of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses reinforcement discovering to boost thinking abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A crucial distinguishing feature is its reinforcement learning (RL) step, which was used to refine the design's responses beyond the standard pre-training and fine-tuning procedure. By including RL, DeepSeek-R1 can adjust more effectively to user feedback and goals, eventually improving both importance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) technique, implying it's geared up to break down complicated queries and factor through them in a detailed way. This guided thinking procedure permits the design to produce more accurate, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT abilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has actually caught the industry's attention as a flexible text-generation design that can be integrated into various workflows such as representatives, logical thinking and information interpretation tasks.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture enables activation of 37 billion specifications, making it possible for efficient inference by routing inquiries to the most pertinent expert "clusters." This method permits the design to concentrate on various problem domains while maintaining general performance. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning abilities of the main R1 model to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller, more efficient designs to imitate the habits and reasoning patterns of the larger DeepSeek-R1 design, using it as an instructor model.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this model with guardrails in place. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid harmful material, and examine designs against key security criteria. At the time of writing this blog site, wakewiki.de for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create several guardrails tailored to various usage cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To ask for a limitation boost, produce a limitation increase demand and connect to your account team.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For directions, see Establish approvals to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, prevent harmful material, and evaluate models against crucial security criteria. You can implement precaution for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to examine user inputs and design reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The basic circulation includes the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After receiving the design's output, another guardrail check is applied. If the output passes this final check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it happened at the input or output stage. The examples showcased in the following sections show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, pick Model catalog under Foundation designs in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to conjure up the design. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and select the DeepSeek-R1 design.

The model detail page offers necessary details about the model's abilities, pricing structure, and application guidelines. You can find detailed usage guidelines, including sample API calls and code bits for combination. The model supports different text generation jobs, consisting of content production, code generation, and question answering, using its reinforcement finding out optimization and CoT reasoning capabilities. The page also consists of implementation options and licensing details to assist you start with DeepSeek-R1 in your applications. 3. To begin using DeepSeek-R1, select Deploy.

You will be triggered to set up the deployment details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters). 5. For Number of circumstances, go into a variety of circumstances (between 1-100). 6. For example type, choose your circumstances type. For optimum performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised. Optionally, you can configure sophisticated security and facilities settings, including virtual personal cloud (VPC) networking, service role permissions, larsaluarna.se and encryption settings. For the majority of use cases, the default settings will work well. However, for production releases, you may desire to evaluate these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the release is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in play area to access an interactive user interface where you can try out different triggers and adjust design parameters like temperature level and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum results. For example, content for inference.

This is an exceptional method to check out the model's reasoning and text generation abilities before incorporating it into your applications. The play ground offers instant feedback, helping you understand how the design reacts to numerous inputs and letting you tweak your prompts for optimum results.

You can quickly test the design in the play ground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference using a deployed DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures reasoning specifications, and sends out a demand to create text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML solutions that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart offers two hassle-free techniques: using the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's check out both methods to assist you select the technique that finest fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design internet browser displays available designs, with details like the supplier name and model abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card. Each model card shows essential details, including:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if appropriate), suggesting that this model can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to invoke the design

    5. Choose the design card to view the design details page.

    The design details page consists of the following details:

    - The design name and supplier details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you deploy the design, it's suggested to evaluate the model details and license terms to confirm compatibility with your use case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, forum.pinoo.com.tr utilize the automatically created name or develop a custom-made one.
  1. For Instance type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, enter the variety of circumstances (default: 1). Selecting appropriate instance types and counts is essential for expense and efficiency optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we strongly suggest adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the design.

    The release procedure can take a number of minutes to complete.

    When release is complete, your endpoint status will alter to InService. At this moment, the design is ready to accept inference demands through the endpoint. You can keep an eye on the release development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the implementation is complete, you can conjure up the model using a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the needed AWS permissions and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for inference programmatically. The code for releasing the model is in the Github here. You can clone the notebook and run from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and implement it as revealed in the following code:

    Clean up

    To prevent unwanted charges, complete the actions in this area to clean up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you released the model using Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace deployments.
  5. In the Managed releases area, locate the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the right deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct ingenious options utilizing AWS services and sped up calculate. Currently, he is focused on developing methods for fine-tuning and enhancing the reasoning efficiency of large language designs. In his leisure time, Vivek takes pleasure in treking, enjoying movies, and trying different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Professional Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about constructing services that assist clients accelerate their AI journey and unlock business value.